
tUME 

the Universal Map Editor 

Source Code Overview 

Confidential Proprietary Information 

May 3, 2010 

Dan Chang 





tUME User's Guide 5/3/2010 

Echidna Confidential i 

Introduction .............................................................................................................................................. 1 
Building tUME ........................................................................................................................... 1 
Object Modules .......................................................................................................................... 1 
Main Event Loop ....................................................................................................................... 2 

Initialization ............................................................................................................................................. 3 

Data Structures......................................................................................................................................... 4 
Tiles ............................................................................................................................................. 4 
Layers .......................................................................................................................................... 4 
Rooms ......................................................................................................................................... 4 
Tile-Brush ................................................................................................................................... 4 
Tilesets ........................................................................................................................................ 5 
Palettes ........................................................................................................................................ 5 

Adding an Event ...................................................................................................................................... 6 

Modules Overview .................................................................................................................................. 7 
tumedraw.c ................................................................................................................................ 7 
download.c ................................................................................................................................. 7 

EGGS Library Overview ......................................................................................................................... 8 
BEIFFLIB ..................................................................................................................................... 8 
EUILIB ........................................................................................................................................ 8 
GFXLIB ....................................................................................................................................... 9 
LDSLIB ........................................................................................................................................ 9 
MEMLIB ..................................................................................................................................... 9 
MISCLIB ..................................................................................................................................... 9 
TIMERLIB ................................................................................................................................... 9 
XPAKLIB .................................................................................................................................... 9 

Function Locations and Brief Descriptions .......................................................................................... 10 

Compile Time Switches and Brief Descriptions .................................................................................. 11 
 





tUME User's Guide 5/3/2010 

Echidna Confidential 1 

Introduction 

This overview of the tUME source code is designed to aid someone in modifying and enhancing tUME. It 
also describes enough of the workings of tUME to enable someone to add a new feature to tUME. 

Building tUME 

To build tUME, you need the Borland C++ 3.1 package; use the command make -a to invoke Borland's 
MAKE on the file MAKEFILE. Note that there are some environment variables that need to be set by 
calling the batch file TUMEVARS.BAT. Alternatively, use the batch file BUILD.BAT to delete all the old 
object modules, set the environment variables, and re-build tUME. 

There are three header files that define compile-time switches. The file switches.h contains mostly 
debugging switches and such; for the most part we leave it alone. 

The file switch1.h controls whether to build a demonstration version or a normal version. 

The file switch2.h controls whether or not to include the downloading code, and which SNASM to 
check for. 

The file license.h contains the tUME licensee's name. 

The file version.c contains the version number. The version number is automatically incremented by 
BUMP.EXE everytime you build tUME. 

The batch file SAVEIT.BAT will save the tUME source code in a zip file. The batch file SAVETOOL.BAT 
will create the zip file tUMETOOL.ZIP found on the tUME executables disk. 

The batch file BPIT.BAT calls BRUSHPAK to process all the graphics in tUME (such as radio buttons, 
check buttons, graphic fonts, mouse pointers, etc.) to create the files EUIBPI.BPI and TUMEBPI.BPI. 
BRUSHPAK converts *.LBM files to some data structure that tUME understands. 

The batch file FPIT.BAT calls FILEPACK to process the *.BPI files to create the file tUME.FPF which is 
loaded by tUME.EXE. FILEPACK collects all the various data bits used by a program, packs the data bits, 
and puts them together in one file. 

Object Modules 

tUME is built using Borland's VROOM technology. All object modules required to build tUME are listed 
in the MAKEFILE. There are four object module suffixes used in the MAKEFILE; they control how the 
object module is compiled: 

*.OBJ ............................ Compile for smallest size; also assembly language module 
*.OBF ............................ Compile for best speed 
*.OVJ ............................ Compile overlaid module for smallest size 
*.OVF ............................ Compile overlaid module for best speed 
 



5/3/2010 tUME User's Guide 

2 Echidna Confidential 

Note that all overlaid modules should be listed in the group OVDEP, and all non-overlaid modules should 
be listed in the group PDEP. 

Main Event Loop 

tUME is an event-driven program. The main loop is found in the file tUME.c, in the function main(), 
and looks like: 

while (!ExitProgram) { 

 ... 

} 

Inside this loop, the program calls ReadMouse() to read the mouse, calls HandleMenus() to process the 
menus, calls HandleKeys() to process any key presses, and calls FN_DontWait() to process mouse 
movements and mouse button presses on screen areas other than the menu bar. 

The menus are defined in tUME.INI, and the code to display the menus and process the menus is found 
in the EGGS (Echidna Game Generation System) library EUILIB. When the user chooses an item on the 
menus, it generates the corresponding event specified in tUME.INI. We look up this event in the first 
column of events.e to determine the corresponding C function to call, which is listed in the second 
column. The menu code performs the lookup in events.c.; we don't need to concern ourselves with 
events.c, as it is generated by the event compiler EVNTCOMP.EXE when we pass events.e as the 
input file. 

E.g., the user chooses Project|Load... to load in a tUME map. By examining the tUME.INI file, we 
determine that the event generated by this menu choice is LoadMap. We search the events.e file for the 
LoadMap event, and determine that the corresponding C function to be called is LMap(). Thus, when the 
user chooses Project|Load..., the event-handler function LMap()gets called by HandleMenus(). 

tUME events are documented in the tUME Configuration Guide. 

Most of the event-handler functions are found in menuitem.c, though a few of them are found in other 
modules. 

Key presses are treated in a similar fashion: the keys and their corresponding events are defined in 
tUME.INI. We look up the event in events.e to find the corresponding event-handler function to call. 
E.g., the user presses [Spacebar]. Examining the tUME.INI file, we find that the corresponding event 
generated is FlipPanes. We search events.e for the corresponding event-handler for FlipPanes, 
which is WFRoom(). Thus, when the user pressed [Spacebar], the event-handler function WFRoom() 
gets called by HandleKeys(). 

FN_DontWait is a pointer to function. It may be NULL, or it may point at Drawing(), Hovering(), 
Selecting(), or Tracking(). When the user is not holding a tile-brush, Hovering() gets to process 
the mouse events; when the user is holding a tile-brush, Tracking() gets to process the mouse events; 
when the user is drag-selecting a tile-brush, Selecting() gets to process the mouse events; and when 
the user is drawing with a tile-brush, Drawing() gets to process the mouse events. 



tUME User's Guide 5/3/2010 

Echidna Confidential 3 

Initialization 

The tUME.INI file is processed by ProcessINI() to set certain global variables, thus defining some of 
tUME's behavior. The events in the [Initial Events] section are processed by 
ProcessInitialINIEvents(). Some of the EGGS library need to be initialized as well; these 
initializations are performed by calling OpenEUI(), OpenDBufGraphics(), and InitFileReqs(). 

Some sections of the tUME.INI file, such as [Zoom Events] and [Cursor Movement Events], 
define new events. These events are dynamically allocated, and added to the list of events by 
AddEmptyEvents(). All events of a class point to one event handler; e.g., all zoom events point to 
SetZoomEvent(), and all cursor movement events point to MoveCursorEvent(). It is the 
responsibility of the class event handler to determine which specific zoom (or cursor, or...) event occurred. 

Note that the tUME Configuration Guide is useful in understanding the contents of the tUME.INI file. 



5/3/2010 tUME User's Guide 

4 Echidna Confidential 

Data Structures 

The majority of tUME's data structures are defined in tudef.h. We consider each object in tUME, and 
talk about the data structures used to represent it. 

Tiles 

Tiles are represented by the data structure PlotType, and have three attributes associated with them: 

UBYTE Plot_Flags .. which contains flip, priority, and colorset information; 
UBYTE TileSet_ID .. which tileset this tile belongs to; and 
UWORD Tile_ID ......... which tile in the tileset is this tile. 
 
TilesSet_IDs are number starting from 1, and Tile_IDs are also numbered starting from 1. 

Layers 

A layer is represented by the data structure LayerType. In a linear memory machine (such as the 
Amiga), a layer is basically an array of PlotTypes. However, in paged memory architectures, a layer is 
basically a RGRGPLT. A RGRGPLT, also defined in tudef.h, is basically a MPYTMPXTPT, along with the 
width and height of the layer. A MPYTMPXTPT is a pointer to an array of MPXTPT. A MPXTPT is just a 
synonym for an XTRAPntr. An XTRAPntr is a pointer to XTRA memory; see the MEMLIB docs. 

The layers of a room are stored in a linked list Layers. The RoomType element LayerType 
*FloorLayer points to the node in the linked list that represents the current floor. 

Layers are created by roomio#AddLayer(), and destroyed by roomio#DeAllocateLayer() and 
roomio#DeAllocateLayers(). 

Rooms 

A room is represented by the data structure RoomType. The linked list Layers contains the layers in the 
room; the structure ColorInfo *R_ColorInfo contains the palette information for the room. 

All the rooms in tUME are stored in the linked-list contained in the data structure MapType 
*GlobalMap. 

Tile-Brush 

The tile-brush is represented by the data structure BlockCopyType. The linked list Layers contains the 
layers of the tile-brush; the elements RoomWindowType *SourceRW, RoomStuffType 
*SourceStuff, RoomType *SourceRoom, WORD SourceX, and WORD SourceY define where the tile-
brush was selected. 



tUME User's Guide 5/3/2010 

Echidna Confidential 5 

While the user is dragging the tile-brush around, the elements RoomWindowType *DestRW, 
RoomStuffType *DestStuff, WORD DestX, and WORD DestY define where the tile-brush is about to 
be pasted. 

Tilesets 

A tileset is represented by the data structure TileSetType. 

The macro FAST_TILESET_PTR takes a Tileset_ID and returns a pointer to the TileSetType data 
structure that contains information for that particular tileset ID. The functional prototype for this macro 
would be something like this: 

 extern TileSetType *FAST_TILESET_PTR(UBYTE TileSet_ID); 

To convert from a TileSetType pointer back to a TileSet_ID, look up the element WORD TS_id in 
the TileSetType data structure. 

All the tilesets in tUME are stored in an array contained in the data structure TileSpaceType 
*GlobalTileSpace. 

Palettes 

A palette is represented by the data structure ColorInfo, which is found in colorseq.h. Since the 
color information structure is fairly large (about 6K!), and since there is one for every room, they are kept 
in XTRA memory. The palette requester is designed to work data structure in main memory, so when it 
starts, it makes a copy of the colors into main memory. 



5/3/2010 tUME User's Guide 

6 Echidna Confidential 

Adding an Event 

Here are step by step instructions for adding a new event to tUME: 

1. Give the event a name, e.g., ToggleCoolNewEvent. 

2. Add a line to represent the event in the events.e file, e.g., 
"ToggleCoolNewEvent" ToggleCoolNewEventHandler ST=CoolNewEventSTATE CHECK 

TOGGLE; 

 The text in the first column in quotes is the name of this event ("ToggleCoolNewEvent"). The 
text in the second column is the name of the event handler (ToggleCoolNewEventHandler). This is the 
C function that gets called when this event is triggered. The rest of the line says that this event has a check 
box (CHECK), and that it TOGGLEs the state variable CoolNewEventSTATE between FALSE and TRUE. 

3. Define the state variable in a C module. Either create a new module, or lump it into menuitem.c. 
E.g., short CoolNewEventSTATE = FALSE;. This sets the state variable initially FALSE. 

4. Define the event handler function in a C module. Either create a new module, or lump it into 
menuitem.c. Make it a function return a short and taking no arguments, e.g., short 
ToggleCoolNewEventHandler(void) { .. }. 

Look at the event SpaceToggle for an example of an event implement using the above four steps. 

Note that it is possible to define mutually exclusive events with radio buttons in the menus. See the events 
SetStampPaint and SetStampReplace for an example of how to do this. If you want to define 
mutually exclusive events, but you don't need the radio buttons, you only need to specify the event name 
and the C function event handler. E.g., the events RoomStatus, TileStatus, UserStatus, and 
CursorStatus can be considered mutually-exclusive, but they do not have radio buttons that reflect 
their mutually-exclusive status. 



tUME User's Guide 5/3/2010 

Echidna Confidential 7 

Modules Overview 

Here we examine some of the algorithms used in some of the modules of tUME. 

tumedraw.c 

This is the heart of tUME. 

The function StampTile() figures out the scaling and draws the actual tile. It will also recursively call 
itself to draw a composite tile. The routine calls one of the assembly language routines, either 
MCGA_ClippedMaskedCopyTransRect() or MCGA_ClippedScaledMaskedCopyTransRect() to 
actually draw the tile. 

Note that rooms are redrawn one layer at a time. When Scroll() scrolls the screen, the unchanged area 
is block copied, and the new area is re-drawn by calling ShowRoomRectLayer(). 

download.c 

The function InitDownloader() includes the calls to check for the presence of SNASM hardware. 

The characters in the current layer are converted to Super Nintendo or Genesis characters. The characters 
are downloaded, the palette for the current room is downloaded, the map for the current layer is 
downloaded, and a header block defining the size of the map and other relevant information is 
downloaded. 

The characters are collected into an array. The characters are collected by spiralling out from the current 
pointer position on the map. It is performed in this fashion to ensure the the map immediately 
surrounding the pointer utilizes the majority of the characters, and the map far away may be less detailed 
(as the character set may be filled by then). 

If you wanted to speed up this routine, you should modify it so that it scans the layer from left to right, 
then from top to bottom. Activate an entire row of XTRA memory at once, the process all tiles in that row 
before proceeding to another row. 



5/3/2010 tUME User's Guide 

8 Echidna Confidential 

EGGS Library Overview 

The EGGS (Echidna Game Generation System) library contains routines and data structures that are 
useful to the development of games on the IBM PC. The libraries are divided by function, and the library 
files are found in the C:\EGGS\LIB\ECHIDNA directory. The source for each library is found in a sub-
directory with the same name (e.g., C:\EGGS\LIB\ECHIDNA\EUILIB). The header files for each EGGS 
library are found in the directory C:\EGGS\INCLUDE\ECHIDNA. The EGGS libraries used in tUME are: 

BEIFFLIB ..................... IFF readers 
EUILIB .......................... menu and keyboard support routines 
GFXLIB .......................... MCGA routines 
LDSLIB .......................... linked list routines 
MEMLIB .......................... EMS and XMS support routines 
MISCLIB ....................... miscellaneous support routines 
TIMERLIB ..................... periodic interrupt support routines 
XPAKLIB ....................... packed data loading routines 
 
To use an EGGS library, merely link it into your program. tUME modifies some of the functionality of 
some of the EGGS libraries; this is accomplished by placing a local copy of the appropriate C source file 
from the library in the tUME directory, making the modifications to the local copy of the source file, and 
adding the C file to the list of modules to compile in the MAKE file. 

To build an EGGS library, enter the sub-directory that contains the source code for that library, and 
execute the batch file MAKEIT.BAT found therein. 

Some libraries, such as BEIFFLIB and EUILIB, are "monolithic"; they contain lots of code just to do one or 
two things. Other libraries, such as LDSLIB and MEMLIB, and more "granular"; they contains lots of little 
functions. 

To understand the tUME source code, and to effectively make additions and modifications to tUME, it is 
important to have a firm understanding of LDSLIB and MEMLIB. Please refer to the documentation for 
those two EGGS libraries. While it is nice to study the other EGGS libraries as well, it is not required; 
study them on an "as needed" basis. 

BEIFFLIB 

The EGGS BEIFFLIB (Big, Easy IFF library) contains the support code necessary to load IFF ILBM files 
and IFF tUME files. The Big part of the name refers to the fact that this library loads the data into EMS or 
XMS memory provided by MEMLIB. 

EUILIB 

The EGGS EUILIB (Easy User Interface library) contains the support code necessary to display the 
windows, display the control gadgets (list boxes and elevators), display the menus, process the user's 
menu choices, and process the user's key presses. EUILIB also contains the standardized file requester. 



tUME User's Guide 5/3/2010 

Echidna Confidential 9 

GFXLIB 

The EGGS GFXLIB (Graphics library) contains the support code necessary to draw on the IBM PC MCGA 
screen. 

LDSLIB 

The EGGS LDSLIB contains the linked list and binary tree support code. 

MEMLIB 

The EGGS MEMLIB contains the EMS and XMS memory support code. 

MISCLIB 

The EGGS MISCLIB contains miscellaneous support routines, such as the error reporting routines, the 
easy input/output routines, the INI file reading routines, the easy C strings routines, and the exit clean-up 
routines. 

TIMERLIB 

The EGGS TIMERLIB contains routines to re-program the IBM PC periodic interrupt, and provides for 
several concurrent interrupts at different periods. 

XPAKLIB 

The EGGS XPAKLIB contains routines to load FPF (FilePack'ed) files, and other support routines. 



5/3/2010 tUME User's Guide 

10 Echidna Confidential 

Function Locations and Brief Descriptions 

The following is a list are some of the key functions in tUME and in the EGGS library, the source file 
where they are found, and a brief description of each function. Non-inclusion in this list does not mean 
the function is un-important. Use Borland's GREP.EXE to find other functions that are not included in the 
following list. Remember: GREP is your friend when it comes to understanding tUME. 

AddLayer() ................ roomio.c: create a new layer and add it to a list of layers 
DeAllocateLayer() roomio.c: free memory used by a single layer 
DeAllocateLayers() roomio.c: free memory used by all layers & free layers linked-list 
Drawing()................... mitems.c: process events when user is drawing with the tile-brush 
HandleKeys() ........... euilib\keyevent.c: reads keys and calls appropriate event-handler functions 
HandleMenus() ......... euilib\menus.c: processes and calls appropriate event-handler functions 
Hovering() ................ mitems.c: process cursor moving around with no tile-brush attached 
FN_DontWait() ......... mitems.c, points to Drawing(), Tracking(), Selecting(), and 

Hovering() 
LMap() .......................... menuitem.c: loads in a tUME map 
ParseINI() ................ parseini.c: read and process the tUME.INI file 
ProcessInitialINIEvents() parseini.c: process [Initial Events] in the tUME.INI file 
ReadMouse() .............. ibmmouse.c: read the mouse position and mouse buttons 
Selecting() .............. mitems.c: process user drag-selecting a new tile-brush 
Scroll() ..................... tumedraw.c: re-draws screen when user scrolls around 
ShowRoom() ................ tumedraw.c: re-draws screen to show current room 
ShowRoomRectLayer() tumedraw.c: draws part of one room layer on screen 
StampTile() .............. tumedraw.c: draws one properly scaled tile on screen 
Tracking() ................ mitems.c: process tile-brush moving around, mouse buttons not pressed 
WFRoom() ..................... menuitem.c: display the other pane on screen 



tUME User's Guide 5/3/2010 

Echidna Confidential 11 

Compile Time Switches and Brief Descriptions 

Here are some of the compile time switches used in tUME and what they mean: 

PLOTARRAY................... defined if linear memory, currently left undefined (paged EMS & XMS memory) 
fDemoBanner .............. switch1.h: set to 1 if you want to build a demo version of tUME 
fDoSaveRooms ........... switch1.h: set to 0 if you want to build a demo version of tUME 
dvpSNASM ..................... switch2.h: set to 1 to include SNASM downloading code 
dvpNONE ....................... switch2.h: set to 1 to not include SNASM downloading code 
fCheck .......................... switch2.h: set to fCheckNone, fCheckSNASM, fCheckGeneral, or fCheckBoth 
 


